Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 491
Filtrar
1.
Front Biosci (Landmark Ed) ; 29(2): 62, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38420807

RESUMO

BACKGROUND: Mesenchymal cells, including hepatic stellate cells (HSCs), fibroblasts (FBs), myofibroblasts (MFBs), and vascular smooth muscle cells (VSMCs), are the main cells that affect liver fibrosis and play crucial roles in maintaining tissue homeostasis. The dynamic evolution of mesenchymal cells is very important but remains to be explored for researching the reversible mechanism of hepatic fibrosis and its evolution mechanism of hepatic fibrosis to cirrhosis. METHODS: Here, we analysed the transcriptomes of more than 50,000 human single cells from three cirrhotic and three healthy liver tissue samples and the mouse hepatic mesenchymal cells of two healthy and two fibrotic livers to reconstruct the evolutionary trajectory of hepatic mesenchymal cells from a healthy to a cirrhotic state, and a subsequent integrative analysis of bulk RNA sequencing (RNA-seq) data of HSCs from quiescent to active (using transforming growth factor ß1 (TGF-ß1) to stimulate LX-2) to inactive states. RESULTS: We identified core genes and transcription factors (TFs) involved in mesenchymal cell differentiation. In healthy human and mouse livers, the expression of NR1H4 and members of the ZEB families (ZEB1 and ZEB2) changed significantly with the differentiation of FB into HSC and VSMC. In cirrhotic human livers, VSMCs transformed into HSCs with downregulation of MYH11, ACTA2, and JUNB and upregulation of PDGFRB, RGS5, IGFBP5, CD36, A2M, SOX5, and MEF2C. Following HSCs differentiation into MFBs with the upregulation of COL1A1, TIMP1, and NR1H4, a small number of MFBs reverted to inactivated HSCs (iHSCs). The differentiation trajectory of mouse hepatic mesenchymal cells was similar to that in humans; however, the evolution trajectory and proportion of cell subpopulations that reverted from MFBs to iHSCs suggest that the mouse model may not accurately reflect disease progression and outcome in humans. CONCLUSIONS: Our analysis elucidates primary genes and TFs involved in mesenchymal cell differentiation during liver fibrosis using scRNA-seq data, and demonstrated the core genes and TFs in process of HSC activation to MFB and MFB reversal to iHSC using bulk RNA-seq data of human fibrosis induced by TGF-ß1. Furthermore, our findings suggest promising targets for the treatment of liver fibrosis and provide valuable insights into the molecular mechanisms underlying its onset and progression.


Assuntos
Análise da Expressão Gênica de Célula Única , Fatores de Transcrição , Camundongos , Animais , Humanos , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Tetracloreto de Carbono/efeitos adversos , Tetracloreto de Carbono/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Fígado/metabolismo , Diferenciação Celular/genética , Células Estreladas do Fígado/metabolismo
2.
J Pak Med Assoc ; 74(1 (Supple-2)): S63-S67, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38385474

RESUMO

OBJECTIVE: To examine the therapeutic effects of Olea europaea L. leaves extract on carbon tetrachloride-induced liver injury in rats. Methods: The experimental study was conducted at the Department of Physiology, University of Karachi, Karachi, in July 2021, and comprised Albino Wistar male rats weighing 180-220gm. The animals were divided into control group I, carbon tetrachloride group II, Olea europaea L. + carbon tetrachloride group III and Olea europaea L. group IV. In Vitro model of hepatic toxicity was developed by carbon tetrachloride. A daily dose of 50mg/kg of aqueous extract of olive leaves was administered orally and 0.8ml/kg of carbon tetrachloride was administered twice a week subcutaneously for 28 days. On the 29th day, the animals were sacrificed, and tested for hepatic enzymes, lipid peroxidation markers and histopathology. Data was analysed using SPSS 20. RESULTS: Of the 24 rats, 6(25%) were in each of the 4 groups. Alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin levels were significantly reduced (p<0.05) in group II whereas, 4- hydroxynonenal, isoprostane and malondialdehyde levels were significantly increased (p<0.05). However, total antioxidant level increased significantly (p<0.05) in group III compared to group II. Histopathology showed severe liver damage in group II and mild damage in group III. Conclusion: Olea europaea L. leaves extract was found to have profound hepatoprotective effects.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Olea , Ratos , Masculino , Animais , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/metabolismo , Olea/metabolismo , Fitoterapia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fígado/patologia , Ratos Wistar , Aspartato Aminotransferases , Alanina Transaminase/metabolismo , Peroxidação de Lipídeos
3.
Carbohydr Res ; 536: 109042, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244321

RESUMO

Two selenized chitooligosaccharide (O-Se-COS and N,O-Se-COS) with different sites modification were synthesized to alleviate liver injury in vivo. Comparing to traditional COS, both selenized COS exhibited enhanced reducibility as well as antioxidant capacity in vitro. Furthermore, O-Se-COS demonstrated superior efficacy in reducing intracellular reactive oxygen species (ROS) and mitochondrial damage compared to N,O-Se-COS as its enhanced cellular uptake by the positive/negative charge interactions. Two mechanisms were proposed to explained these results: one is to enhance the enzymatic activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), which effectively scavenge free radicals; the other is to down-regulate intracellular cytochrome P450 (CYP2E1) levels, inhibiting carbon tetrachloride (CCl4)-induced peroxidation damage. In vivo studies further demonstrated the effective alleviation of CCl4-induced liver injury by selenized COS, with therapeutic efficacy observed in the following order: O-Se-COS > N,O-Se-COS > COS. Finally, hemolysis and histological tests confirmed the biosafety of both selenized COS. Taken together, these finding demonstrated that selenium has the potential to improve the biological activity of COS, and precise selenylation was more conducive to achieving the synergistic effect where 1 + 1>2.


Assuntos
Quitosana , Fígado , Oligossacarídeos , Selênio , Antioxidantes/farmacologia , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Quitina/farmacologia , Quitina/uso terapêutico , Quitina/metabolismo , Estresse Oxidativo , Selênio/farmacologia , Selênio/metabolismo
4.
J Mol Med (Berl) ; 102(1): 113-128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37993562

RESUMO

Hepatic fibrosis (HF) could be developed into liver cirrhosis or even hepatocellular carcinoma. Stress has an important role in the occurrence and development of various considerable diseases. However, the effect of a certain degree stress on HF is still controversial. In our study, stress was simulated with regular chronic restraint stress (CRS) and HF model was induced with CCl4 in mice. We found that CRS was able to attenuate CCl4-induced liver injury and fibrosis in mice. Surprisingly, behavioral analysis showed that the mice in the HF group exhibited depression-like behavior. Further, the metabolomic analysis revealed that 119 metabolites and 20 metabolic pathways were altered in mice liver, especially the betaine metabolism pathway. Combined with the results of Ingenuity Pathway Analysis (IPA), the key proteins INSR, PI3K, AKT, and p-AMPK were identified and verified, and the results showed that CRS could upregulate the protein levels and mRNA expression of INSR, PI3K, AKT, and p-AMPK in liver tissues of HF mice. It suggested that CRS alleviated CCl4-induced liver fibrosis in mice through upregulation of the INSR/PI3K/AKT/AMPK pathway. Proper stress might be a potential therapeutic strategy for the treatment of chronic liver disease, which provided new insights into the treatment of HF. KEY MESSAGES: Chronic restraint stress mitigated CCl4-induced liver injury and hepatic fibrosis. CCl4-induced liver fibrosis could cause depression-like behavior. Chronic restraint stress altered metabolomic profiles in hepatic fibrosis mice, especially the betaine metabolism pathway. Chronic restraint stress increased betaine levels in liver tissue. Chronic restraint stress regulated the INSR/PI3K/AKT/AMPK signaling pathway in hepatic fibrosis mice.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Tetracloreto de Carbono/efeitos adversos , Tetracloreto de Carbono/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Betaína/farmacologia , Cirrose Hepática/metabolismo , Células Estreladas do Fígado/metabolismo
5.
J Agric Food Chem ; 71(49): 19475-19487, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038700

RESUMO

Liver fibrosis refers to the excessive buildup of extracellular matrix (ECM) components in liver tissue. It is considered a pathological response to liver damage for which there is no effective treatment. Aloin, an anthraquinone compound isolated from the aloe plant, has shown good pharmacological effects in the treatment of gastric cancer, ulcerative colitis, myocardial hypertrophy, traumatic brain injury, and other diseases; however, its specific impact on liver fibrosis remains unclear. To address this gap, we conducted a study to explore the mechanisms underlying the potential antifibrotic effect of aloin. We constructed a mouse liver fibrosis model using carbon tetrachloride (CCl4) dissolved in olive oil as a modeling drug. Additionally, a cellular model was developed by using transforming growth factor ß1 (TGF-ß1) as a stimulus applied to hepatic stellate cells. After aloin intervention, serum alanine aminotransferase, hepatic hydroxyproline, and serum aspartate aminotransferase were reduced in mice after aloin intervention compared to CCl4-mediated liver injury without aloin intervention. Aloin relieved the oxidative stress caused by CCl4 via reducing hepatic malondialdehyde in liver tissue and increasing the level of superoxide dismutase. Aloin treatment decreased interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α and increased the expression of IL-10, which inhibited the inflammatory response in liver injury. In addition, aloin inhibited the activation of hepatic stellate cells and reduced the level of α-smooth muscle actin (α-SMA) and collagen type I. In cell and animal experiments, aloin attenuated liver fibrosis, acting through the TGF-ß/Smad2/3 signaling pathway, and mitigated CCl4- and TGF-ß1-induced inflammation. Thus, the findings of this study provided theoretical data support and a new possible treatment strategy for liver fibrosis.


Assuntos
Proteínas Smad , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo , Proteínas Smad/farmacologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Fígado/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Estresse Oxidativo , Modelos Animais de Doenças , Tetracloreto de Carbono/efeitos adversos , Tetracloreto de Carbono/metabolismo , Células Estreladas do Fígado
6.
Vopr Pitan ; 92(4): 81-91, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37801458

RESUMO

One of the principles of prevention and non-medicamentous treatment of liver diseases, including hepatitis of different etiology, is the normalization of the diet through the consumption of food with physiologically active ingredients, in particular betulin, which helps to eliminate the causes of metabolic and oxidative disorders within liver cells. The aim of the research was to assess in vivo the influence of triterpene alcohol betulin extracted from Betula pendula Roth. birch bark in fat-containing products (for example mayonnaise) on the blood biochemical parameters and liver morphological structure of rats with initiated acute toxic hepatitis. Material and methods. Hepatoprotective and antioxidant activities of betulin as part of mayonnaise samples has been investigated in vivo on the model of toxic hepatitis initiated by carbon tetrachloride in male Wistar rats weighing 210-265 g. The animals were divided into 4 groups of 10 animals each: CG-1 - intact, CG-2 and MG - with carbon tetrachloride initiated toxic hepatitis. rats of the main groups were orally administered mayonnaise once a day at a dosage of 1 ml for 21 days after the formation of the model pathology: OG-1 with the added betulin (1 mg per 1 kg of body weight), OG-2 without betulin. Disorders of metabolic and oxidative processes in liver cells of animals were evaluated by biochemical indicators of blood plasma: the level of glucose, albumin, total cholesterol, triglycerides and urea and the activity of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and γ-glutamyltransferase. Oxidative stress in rats was estimated by the activity of catalase and superoxide dismutase in blood hemolysate (at a dilution of 1:200 and 1:10, respectively); the total prooxidant (in blood plasma) and total antioxidant (in blood hemolysate at a dilution of 1:10) activity were determined spectrophotometrically (colored complexes of TWIN-80 oxidation products with thiobarbituric acid). The morphological structure of rats' liver was estimated by microscopy of prepared cuts of hepatic tissue. Results. Based on biochemical parameters of rat blood plasma, it has been established that the administration of mayonnaise with betulin prevents the development of cytolic syndrome and suppresses the process of peroxidation by directly neutralizing free radicals. Aspartate aminotransferase and alkaline phosphatase activity in blood plasma of the experimental animals of the main group MG-1 reduced by 20.7 and 35.2% compared with indicators of the rats of the main group MG-2. Glucose concentration normalized to the level of the control group CG-1. The concentration of bilirubin and triglycerides decreased by 22.9 and by 48.1%, which indicates a significant reduction in the indicators of cholestatic syndrome in the group of animals OG-1 compared to OG-2. The total prooxidant activity and the concentration of thiobarbiturate-reactive products decreased compared to the CG-2 and MG-2 groups, which indicates the suppression of oxidative stress and, as a result, an improvement in liver conditions of animals with toxic hepatitis even when taking a fat-containing product. In liver histopeparates of animals receiving mayonnaise with betulin, necrobotic changes were less pronounced in comparison with the group MG-2. They were estimated at 1 point: small-drip dystrophy spots were found, haemorrhages in the interregional septum with inflammatory infiltration in the course of hemorrhages against the presence of necrosis hepatocytes with pronounced adipose dystrophy in the centres of the lobules, step necrosis with signs of replacing the damaged hepatocytes of the connective tissue, accompanied by centrolobular hemorrhages in MG-2 rats. Conclusion. Introduced into the composition of mayonnaise betulin, reduces the development of cytolic syndrome in toxic hepatitis and suppresses the process of peroxidation, on the basis of which fat-containing foods with betulin can be recommended for clinical examination as specialized products in acute and chronic liver diseases, including complicated cholestasis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Triterpenos , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Ratos Wistar , Tetracloreto de Carbono/metabolismo , Tetracloreto de Carbono/farmacologia , Triterpenos/farmacologia , Triterpenos/metabolismo , Fosfatase Alcalina , Hepatopatias/tratamento farmacológico , Hepatopatias/metabolismo , Hepatopatias/prevenção & controle , Fígado/metabolismo , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Animais de Laboratório/metabolismo , Necrose/tratamento farmacológico , Necrose/metabolismo , Triglicerídeos/metabolismo , Hemorragia/tratamento farmacológico , Hemorragia/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Peroxidação de Lipídeos
7.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G418-G428, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37668531

RESUMO

Mediator subunit mediator 1 (MED1) mediates ligand-dependent binding of the mediator coactivator complex to various nuclear receptors and plays a critical role in embryonic development, lipid and glucose metabolism, liver regeneration, and tumorigenesis. However, the precise role of MED1 in the development of liver fibrosis has been unclear. Here, we showed that MED1 expression was increased in livers from nonalcoholic steatohepatitis (NASH) patients and mice and positively correlated with transforming growth factor ß (TGF-ß) signaling and profibrotic factors. Upon treatment with carbon tetrachloride (CCl4), hepatic fibrosis was much less in liver-specific MED1 deletion (MED1ΔLiv) mice than in MED1fl/fl littermates. TGF-ß/Smad2/3 signaling pathway was inhibited, and gene expression of fibrotic markers, including α-smooth muscle actin (α-SMA), collagen type 1 α 1 (Col1a1), matrix metalloproteinase-2 (Mmp2), and metallopeptidase inhibitor 1 (Timp1) were decreased in livers of MED1ΔLiv mice with CCl4 injection. Transcriptomic analysis revealed that the differentially expressed genes in livers of CCl4-administered MED1ΔLiv mice were enriched in the pathway of oxidoreductase activity, followed by robustly reduced oxidoreductase activity-related genes, such as Gm4756, Txnrd3, and Etfbkmt. More importantly, we found that the reduction of reactive oxygen species (ROS) in MED1 knockdown hepatocytes blocked the activation of TGF-ß/Smad2/3 pathway and the expression of fibrotic genes in LX2 cells. These results indicate that MED1 is a positive regulator for hepatic fibrogenesis, and MED1 may be considered as a potential therapeutic target for the regression of liver fibrosis.NEW & NOTEWORTHY In this study, we present the first evidence that liver mediator 1 (MED1) deficiency attenuated carbon tetrachloride-induced hepatic fibrosis in mouse. The underlying mechanism is that MED1 deficiency reduces reactive oxygen species (ROS) production in hepatocytes, thus restricts the activation of TGF-ß/Smad2/3 signaling pathway and fibrogenic genes expression in hepatic stellate cells (HSCs). These data suggest that MED1 is an essential regulator for hepatic fibrogenesis, and MED1 may be considered as a potential therapeutic target for liver fibrosis.


Assuntos
Tetracloreto de Carbono , Metaloproteinase 2 da Matriz , Animais , Humanos , Camundongos , Tetracloreto de Carbono/metabolismo , Fibrose , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/prevenção & controle , Metaloproteinase 2 da Matriz/metabolismo , Subunidade 1 do Complexo Mediador/metabolismo , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
8.
J Complement Integr Med ; 20(4): 797-803, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37732506

RESUMO

OBJECTIVES: The hepatoprotective properties of scopoletin have been explored in carbon tetrachloride (CCl4) induced liver injury but not in drug-induced liver injury (DILI) scenarios. Only N-acetyl-cysteine (NAC) has proven efficacy in DILI treatment. Accordingly, we conducted a study to assess the hepatoprotective action of scopoletin in the anti-tubercular treatment (ATT)-DILI model in Wistar rats, if any. METHODS: A total of 36 rats were evaluated, with six in each group. A 36-day ATT at 100 mg/kg dose for isoniazid, 300 mg/kg for rifampicin and 700 mg/kg for pyrazinamide were fed to induce hepatotoxicity in rats. Group I and II-VI received normal saline and ATT, respectively. Oral scopoletin (1,5 and 10 mg/kg) and NAC 150 mg/kg were administered in groups III, IV, V and VI, respectively, once daily for the last 15 days of the experiment. LFT monitoring was performed at baseline, days 21, 28, and 36. Rats were sacrificed for the histopathology examination. RESULTS: Aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and bilirubin levels were significantly increased in group II (receiving ATT) compared to normal control on day 28 and day 36 (p<0.05). All three doses of scopoletin and NAC groups led to the resolution of AST, ALT, ALP, and bilirubin changes induced by ATT medications effect beginning by day 28 and persisting on day 36 (p<0.01). An insignificant effect was observed on albumin and total protein levels. The effect was confirmed with antioxidants and histopathology analysis. CONCLUSIONS: The study confirms the hepatoprotective efficacy of scopoletin in a more robust commonly encountered liver injury etiology.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Escopoletina , Ratos , Animais , Ratos Wistar , Escopoletina/farmacologia , Escopoletina/uso terapêutico , Escopoletina/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Antituberculosos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado , Bilirrubina/metabolismo , Fosfatase Alcalina/metabolismo , Tetracloreto de Carbono/metabolismo , Tetracloreto de Carbono/farmacologia , Alanina Transaminase/metabolismo
9.
Liver Int ; 43(11): 2523-2537, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37641479

RESUMO

BACKGROUND AND PURPOSE: Liver fibrosis is a wound-healing reaction that eventually leads to cirrhosis. Hydronidone is a new pyridine derivative with the potential to treat liver fibrosis. In this study, we explored the antifibrotic effects of hydronidone and its potential mode of action. METHODS: The anti-hepatic fibrosis effects of hydronidone were studied in carbon tetrachloride (CCl4 )- and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)- induced animal liver fibrosis. The antifibrotic mechanisms of hydronidone were investigated in hepatic stellate cells (HSCs). The antifibrotic effect of hydronidone was further tested after Smad7 knockdown in HSCs in mouse models of fibrosis. RESULTS: In animal models, hydronidone attenuated liver damage and collagen accumulation, and reduced the expression of fibrosis-related genes. Hydronidone decreased the expression of fibrotic genes in HSCs. Impressively, hydronidone significantly upregulated Smad7 expression and promoted the degradation of transforming growth factor ß receptor I (TGFßRI) in HSCs and thus inhibited the TGFß-Smad signalling pathway. Specific knockdown of Smad7 in HSCs in vivo blocked the antifibrotic effect of hydronidone. CONCLUSION: Hydronidone ameliorates liver fibrosis by inhibiting HSCs activation via Smad7-mediated TGFßRI degradation. Hydronidone is a potential drug candidate for the treatment of liver fibrosis.


Assuntos
Cirrose Hepática , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Camundongos , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Receptor do Fator de Crescimento Transformador beta Tipo I , Fator de Crescimento Transformador beta/metabolismo , Proteína Smad7/efeitos dos fármacos , Proteína Smad7/metabolismo
10.
Fitoterapia ; 171: 105605, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37437698

RESUMO

Carthamus tinctorius L. leaves, a waste product after Carthami flos production, are rich in flavonoids. Total flavonoids from C. tinctorius L. leaves (TFCTLL) exhibited the protective effect on acute liver injury in mice in previous studies. The aim of the present study was to evaluate the hepatoprotective effect of TFCTLL on chronic liver injury (CLI) and investigate the underlying mechanism. The chemical components of TFCTLL were identified by UPLC-Q-TOF/MS, and their migration into blood was evaluated. The protective effect of TFCTLL on CLI was evaluated by antioxidative and anti-inflammatory experiments in vitro, network pharmacology and a carbon tetrachloride (CCl4)-induced CLI mouse model. We indentified 18 chemical components in the TFCTLL samples and 4 components in plasma. TFCTLL showed significant anti-inflammatory activity and antioxidant capacity in vitro and in vivo. TFCTLL administration prominently improved the liver function and structure, decreased the mRNA expression levels of TLR2, TLR3, TLR4, NF-κB p65, IRF3, AKT1, TRIF, PI3K, MyD88, IL-1ß and TNF-α and inhibited the protein expression and nuclear translocation of NF-κB p65 in mice with CLI. The molecular docking results showed that components in plasma had high binding affinity for the targets TLR4, PI3K and AKT1. Therefore, TFCTLL has a protective effect against CCl4-induced CLI, and the underlying mechanisms may be related to antioxidation, anti-inflammation and modulation of the TLRs/NF-κB and PI3K/AKT pathways.


Assuntos
Tetracloreto de Carbono , Carthamus tinctorius , Camundongos , Animais , Tetracloreto de Carbono/metabolismo , Tetracloreto de Carbono/farmacologia , Carthamus tinctorius/química , Carthamus tinctorius/metabolismo , Estresse Oxidativo , NF-kappa B/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Simulação de Acoplamento Molecular , Receptor 4 Toll-Like/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estrutura Molecular , Fígado , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
11.
J Toxicol Environ Health B Crit Rev ; 26(6): 342-370, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37282619

RESUMO

Carbon tetrachloride (CCl4) has been extensively used and reported to produce toxicity, most notably involving the liver. Carbon tetrachloride metabolism involves CYP450-mediated bioactivation to trichloromethyl and trichloromethyl peroxy radicals, which are capable of macromolecular interaction with cell components including lipids and proteins. Radical interaction with lipids produces lipid peroxidation which can mediate cellular damage leading to cell death. Chronic exposure with CCl4 a rodent hepatic carcinogen with a mode of action (MOA) exhibits the following key events: 1) metabolic activation; 2) hepatocellular toxicity and cell death; 3) consequent regenerative increased cell proliferation; and 4) hepatocellular proliferative lesions (foci, adenomas, carcinomas). The induction of rodent hepatic tumors is dependent upon the dose (concentration and exposure duration) of CCl4, with tumors only occurring at cytotoxic exposure levels. Adrenal benign pheochromocytomas were also increased in mice at high CCl4 exposures; however, these tumors are not of relevant importance to human cancer risk. Few epidemiology studies that have been performed on CCl4, do not provide credible evidence of enhanced risk of occurrence of liver or adrenal cancers, but these studies have serious flaws limiting their usefulness for risk assessment. This manuscript summarizes the toxicity and carcinogenicity attributed to CCl4, specifically addressing MOA, dose-response, and human relevance.


Assuntos
Neoplasias das Glândulas Suprarrenais , Neoplasias Hepáticas , Feocromocitoma , Camundongos , Humanos , Animais , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Lipídeos
12.
J Agric Food Chem ; 71(21): 8038-8049, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37196215

RESUMO

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an essential regulatory target of antioxidants, but the lack of Nrf2 active site information has hindered discovery of new Nrf2 agonists from food-derived compounds by large-scale virtual screening. Two deep-learning models were separately trained to screen for Nrf2-agonists and safety. The trained models screened potentially active chemicals from approximately 70,000 dietary compounds within 5 min. Of the 169 potential Nrf2 agonists identified via deep-learning screening, 137 had not been reported before. Six compounds selected from the new Nrf2 agonists significantly increased (p < 0.05) the activity of Nrf2 on carbon tetrachloride (CCl4)-intoxicated HepG2 cells (nicotiflorin (99.44 ± 18.5%), artemetin (97.91 ± 8.22%), daidzin (87.73 ± 3.77%), linonin (74.27 ± 5.73%), sinensetin (72.74 ± 10.41%), and tectoridin (77.78 ± 4.80%)), and their safety were demonstrated by an MTT assay. The safety and Nrf2 agonistic activity of nicotiflorin, artemetin, and daidzin were also reconfirm by a single-dose acute oral toxicity study and CCl4-intoxicated rat assay.


Assuntos
Aprendizado Profundo , Fator 2 Relacionado a NF-E2 , Ratos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/química , Dieta , Tetracloreto de Carbono/metabolismo , Estresse Oxidativo , Fígado/metabolismo
13.
Front Biosci (Landmark Ed) ; 28(5): 87, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37258482

RESUMO

BACKGROUND: In humans, chronic liver disease (CLD) is a serious clinical condition with many life-threatening complications. Currently, there is no therapy to stop or slow down the progression of liver fibrosis. Experimental mouse models of CLD, induced by repeated intraperitoneal injections of carbon tetrachloride (CCL4) and D-galactosamine (D-GalN), can be used to evaluate therapies that cannot be performed in humans. A major drawback of these animal models is the different dynamics of liver fibrosis progression depending on the animal strain, administered hepatotoxin, its dose, duration of intoxication, and frequency of injections. The aim of this study was to describe and compare the dynamics of progression of pathological changes in the BALB/c mouse and Sprague Dawley rat models of CLD induced by CCl4 and D-GalN. We defined the onset and duration of these changes and suggested the optimal time for therapeutic intervention in the analyzed CLD models. METHODS: CLD was induced by repeated intraperitoneal injection of CCl4 in mice (12.5 µL/100 g bw every 5 days) and rats (25-100 µL/100 g bw twice a week) and D-GalN in mice (75 mg/100 g bw twice a week) and rats (25 mg/100 g bw twice a week). Blood and liver samples were collected at weeks 2, 4, 6, 8, 10, and 12 of intoxication. Liver injury and its progression were assessed by using complete blood count and liver function blood tests as well as by analyzing histopathological changes, including fibrosis, proliferation activity, apoptosis, stellate cell activation, and gene expression. RESULTS: In mice and rats treated with CCl4, early fibrosis was observed in most pericentral areas from week 2 to 4 of intoxication. Established fibrosis developed in both rats and mice at week 6 of intoxication. Incomplete cirrhosis, defined as the presence of occasional cirrhotic nodules, was observed in rats at week 12 of intoxication. The dynamics of liver fibrosis in CCl4-treated animals were greater than in the D-GalN groups. In D-GalN-intoxicated rats and mice, the first signs of liver fibrosis were observed at weeks 4 and 10 of intoxication, respectively. The rats developed early fibrosis after 8 weeks of D-GalN intoxication. The progression of collagen deposition was accompanied by histological changes and alteration of certain genes and blood liver parameters. CONCLUSIONS: The dynamics of liver fibrosis in CCl4 treated rodents is greater than in the D-GalN treated ones. In the CCl4 models, two appropriate times for therapeutic intervention are indicated, which to varying degrees reflect the real clinical situation and may potentially differ in the obtained results: early intervention before week 4 of intoxication (early fibrosis) and late intervention after week 8 of intoxication (when signs of established fibrosis are present). Rodent models of D-GalN-induced fibrosis are not recommended due to the long incubation period and weak toxic effect.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado , Humanos , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças
14.
Food Chem Toxicol ; 175: 113752, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004906

RESUMO

Anneslea Fragrans Wall. (AF) is a medicinal and edible plant distributed in China. Its leaves and barks are generally used for the treatments of diarrhea, fever, and liver diseases. While its ethnopharmacological application against liver diseases has not been fully studied. This study was aimed to evaluate the hepatoprotective effect of ethanolic extract from A. fragrans (AFE) on CCl4 induced liver injury in mice. The results showed that AFE could effectively reduce plasma activities of ALT and AST, increase antioxidant enzymes activities (SOD and CAT) and GSH level, and decrease MDA content in CCl4 induced mice. AFE effectively decreased the expressions of inflammatory cytokines (IL-1ß, IL-6, TNF-α, COX-2 and iNOS), cell apoptosis-related proteins (Bax, caspase-3 and caspase-9) and increased Bcl-2 protein expression via inhibiting MAPK/ERK pathway. Additionally, TUNEL staining, Masson and Sirius red staining, immunohistochemical analyses revealed that AFE could inhibit the CCl4-induced hepatic fibrosis formation via reducing depositions of α-SMA, collagen I and collagen III proteins. Conclusively, the present study demonstrated that AFE had an hepatoprotective effect by suppressing MAPK/ERK pathway to inhibit oxidative stress, inflammatory response and apoptosis in CCl4-induced liver injury mice, suggesting that AFE might be served as a hepatoprotective ingredient in the prevention and treatment of liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/metabolismo , Fígado , Estresse Oxidativo , Antioxidantes/farmacologia , Apoptose , Etanol/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
15.
Biopharm Drug Dispos ; 44(5): 351-357, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37032489

RESUMO

Certain pathological conditions, such as inflammation, are known to affect basal cytochrome P450 (CYP) expression by modulating transcriptional regulation, and the pharmacokinetics of drugs can vary among patients. However, changes in drug-induced CYP expression under pathological conditions have not been elucidated in detail. Here, we investigated the effects of hepatic inflammation and injury on phenobarbital-induced expression of CYP isoforms in mice. Phenobarbital was administered once as a CYP inducer in the carbon tetrachloride-induced hepatitis model mice. The mRNA expression levels of Cyp3a11 and Cyp2b10 in the liver and small intestine were measured using reverse transcription polymerase chain reaction. The enzymatic activity of CYP3A in liver S9 was evaluated using midazolam as the substrate. Phenobarbital increased the mRNA expression of Cyp3a11 and Cyp2b10 in the liver of healthy mice, but not in the small intestine. Increased mRNA expression of hepatic Cyp3a11 and Cyp2b10 by phenobarbital was significantly suppressed in the hepatitis model mice. Hepatitis also suppressed the increased CYP3A enzymatic activity induced by phenobarbital in liver S9, consistent with the results of Cyp3a11 mRNA expression. These results suggest that the inducibility of CYP by phenobarbital may vary in patients with hepatitis, indicating that pharmacokinetic drug-drug interactions can be altered under certain pathological conditions.


Assuntos
Tetracloreto de Carbono , Hepatite , Camundongos , Humanos , Animais , Tetracloreto de Carbono/metabolismo , Tetracloreto de Carbono/farmacologia , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fenobarbital/farmacologia , Fenobarbital/metabolismo , Fígado/metabolismo , Regulação Enzimológica da Expressão Gênica , Hepatite/metabolismo , Inflamação/metabolismo , RNA Mensageiro/metabolismo
16.
Arch Pharm Res ; 46(3): 177-191, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36905489

RESUMO

Truncated transforming growth factor ß receptor type II (tTßRII) is a promising anti-liver fibrotic candidate because it serves as a trap for binding excessive TGF-ß1 by means of competing with wild type TßRII (wtTßRII). However, the widespread application of tTßRII for the treatment of liver fibrosis has been limited by its poor fibrotic liver-homing capacity. Herein, we designed a novel tTßRII variant Z-tTßRII by fusing the platelet-derived growth factor ß receptor (PDGFßR)-specific affibody ZPDGFßR to the N-terminus of tTßRII. The target protein Z-tTßRII was produced using Escherichia coli expression system. In vitro and in vivo studies showed that Z-tTßRII has a superior specific fibrotic liver-targeting potential via the engagement of PDGFßR-overexpressing activated hepatic stellate cells (aHSCs) in liver fibrosis. Moreover, Z-tTßRII significantly inhibited cell migration and invasion, and downregulated fibrosis- and TGF-ß1/Smad pathway-related protein levels in TGF-ß1-stimiluated HSC-T6 cells. Furthermore, Z-tTßRII remarkably ameliorated liver histopathology, mitigated the fibrosis responses and blocked TGF-ß1/Smad signaling pathway in CCl4-induced liver fibrotic mice. More importantly, Z-tTßRII exhibits a higher fibrotic liver-targeting potential and stronger anti-fibrotic effects than either its parent tTßRII or former variant BiPPB-tTßRII (PDGFßR-binding peptide BiPPB modified tTßRII). In addition, Z-tTßRII shows no significant sign of potential side effects in other vital organs in liver fibrotic mice. Taken together, we conclude that Z-tTßRII with its a high fibrotic liver-homing potential, holds a superior anti-fibrotic activity in liver fibrosis in vitro and in vivo, which may be a potential candidate for targeted therapy for liver fibrosis.


Assuntos
Cirrose Hepática , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Células Estreladas do Fígado/metabolismo , Transdução de Sinais , Compostos Orgânicos/farmacologia , Fator de Crescimento Transformador beta , Tetracloreto de Carbono/efeitos adversos , Tetracloreto de Carbono/metabolismo
17.
Appl Biochem Biotechnol ; 195(10): 5966-5979, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36729297

RESUMO

BACKGROUND: Some herbal natural products play an important role in protecting organisms from the toxic effect of some xenobiotics. The present study was designed to evaluate the potential therapeutic effects of Ottelione A (OTTE) against carbon tetrachloride(CCl4)-induced toxicity in mice. METHODS: Adult male Swiss albino mice were divided into six groups: group I was used as a normal control received olive oil; group II received DMSO; group III received OTTE; group IV received CCl4 in olive oil, (injected i.p) 3 times/week for 6 weeks; group V received the same CCl4 regimen as group IV followed by OTTE injected for 15 days, and group VI first received OTTE injected for 15 days followed by the same CCl4 regimen as group IV. Some biochemical and histological parameters were investigated. RESULTS: Our results showed that the administration of CCl4 caused hepatotoxicity, as monitored by the significant increase in biochemical parameters concerning the olive oil group. Treatment with OTTE appeare d to be effective against hepatotoxic and liver changes induced by CCl4, as evidenced by the improvement of the same parameters. CONCLUSION: Ottelione A (OTTE) has good antioxidant and therapeutic properties, which can help in preventing CCl4-induced hepatotoxicity in both pre-treatment and post-treatment modes.


Assuntos
Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Masculino , Animais , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/metabolismo , Azeite de Oliva/farmacologia , Azeite de Oliva/metabolismo , Extratos Vegetais/química , Antioxidantes/farmacologia , Fígado/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Estresse Oxidativo
18.
Chemosphere ; 319: 137988, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36724852

RESUMO

Carbon tetrachloride (CT) is a recalcitrant and high priority pollutant known for its toxicity, environmental prevalence, and inhibitory activities. Although much is known about anaerobic CT biodegradation, microbial degradation of CT under aerobic conditions has not yet been reported. This study reports for the first time the enrichment of a stable aerobic CT-degrading bacterial consortium, from a CT-contaminated groundwater sample, capable of co-metabolically degrading 30 µM of CT within a week. A Pseudomonas strain (designated as Stari2) that is the predominant bacterium in this consortium was isolated, and further characterization showed that this bacterium can tolerate and co-metabolically degrade up to 5 mM of CT under aerobic conditions in the presence of different carbon/energy sources. The CT biodegradation profiles of strain Stari2 and the consortium were found to be identical, while no significant positive correlation between strain Stari2 and other bacteria was observed in the consortium during the period of higher CT biodegradation. These results confirmed that the isolated Pseudomonas strain Stari2 is the key player in the consortium catalyzing the biodegradation of CT. No chloroform (CF) or other chlorinated compound was detected during the cometabolism of CT. The whole genome sequencing of strain Stari2 showed that it is a novel Pseudomonas species. The findings demonstrated that biodegradation of CT under aerobic conditions is feasible, and the isolated CT-degrader Pseudomonas sp. strain Stari2 has a great potential for in-situ bioremediation of CT-contaminated environments.


Assuntos
Poluentes Ambientais , Pseudomonas , Pseudomonas/genética , Tetracloreto de Carbono/metabolismo , Consórcios Microbianos , Bactérias/metabolismo , Poluentes Ambientais/metabolismo , Biodegradação Ambiental
19.
Pharmacol Res ; 189: 106704, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813093

RESUMO

The roles of nuclear receptor subfamily 1 group d member 1 (NR1D1) and the circadian clock in liver fibrosis remain unclear. Here, we showed that liver clock genes, especially NR1D1, were dysregulated in mice with carbon tetrachloride (CCl4)-induced liver fibrosis. In turn, disruption of the circadian clock exacerbated experimental liver fibrosis. NR1D1-deficient mice were more sensitive to CCl4-induced liver fibrosis, supporting a critical role of NR1D1 in liver fibrosis development. Validation at the tissue and cellular levels showed that NR1D1 was primarily degraded by N6-methyladenosine (m6A) methylation in a CCl4-induced liver fibrosis model, and this result was also validated in rhythm-disordered mouse models. In addition, the degradation of NR1D1 further inhibited the phosphorylation of dynein-related protein 1-serine site 616 (DRP1S616), resulting in weakened mitochondrial fission function and increased mitochondrial DNA (mtDNA) release in hepatic stellate cell (HSC), which in turn activated the cGMP-AMP synthase (cGAS) pathway. Activation of the cGAS pathway induced a local inflammatory microenvironment that further stimulated liver fibrosis progression. Interestingly, in the NR1D1 overexpression model, we observed that DRP1S616 phosphorylation was restored, and cGAS pathway was also inhibited in HSCs, resulting in improved liver fibrosis. Taken together, our results suggest that targeting NR1D1 may be an effective approach to liver fibrosis prevention and management.


Assuntos
Relógios Circadianos , Células Estreladas do Fígado , Camundongos , Animais , Metilação , Cirrose Hepática/metabolismo , Fígado , Nucleotidiltransferases , Tetracloreto de Carbono/metabolismo , Tetracloreto de Carbono/farmacologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo
20.
Cell Signal ; 105: 110612, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36709823

RESUMO

Previously, we found that the 5-HT2A receptor plays a key role in cell injury. However, the mechanism by which the 5-HT2A receptor mediates intracellular processes remains unclear. In this study, we aimed to clarify this intracellular process in hepatocyte LO2 cells and evaluate its role in CCl4-induced hepatotoxicity in mice. In vitro, both the agonist and overexpression of 5-HT2A receptor could promote 5-HT degradation by upregulating the expression of 5-HT synthases and monoamine oxidase-A (MAO-A) to cause overproduction of ROS in mitochondria. We refer to this as the activation of the 5-HT degradation system (5DS) axis, which leads to the phosphorylation of JNK, p38 MAPK, STAT3, and NF-κB; upregulation of Bax, cleaved-caspase3, and cleaved-caspase9; and downregulation of Bcl-2, followed by apoptosis and oversecretion of TNF-α and IL-1ß in cells. This phenomenon could be markedly blocked by the 5-HT2A receptor antagonist, MAO-A inhibitor, or gene-silencing MAO-A. Through protein kinases C epsilon (PKCε) agonist treatment and gene silencing of the PKCε and 5-HT2A receptor, we demonstrated that the 5-HT2A receptor controls 5-HT synthases and MAO-A expression via the PKCε pathway in cells. Unexpectedly, we discovered that PKCε-mediated phosphorylation of the AKT/mTOR pathway is also a consequence of the activation of the 5DS axis. Furthermore, we confirmed that the inhibition of the 5DS axis using the 5-HT2A receptor antagonist could prevent hepatotoxicity induced by CCl4 both in vitro and in vivo, inhibiting the aforementioned signaling cascades, inflammation, and apoptosis, and that the 5DS activation area overlapped the necrotic area of mouse liver. Taken together, we revealed a 5DS axis in hepatocytes that controls the signaling cascades associated with inflammation and apoptosis and confirmed its role in CCl4-induced hepatotoxicity.


Assuntos
Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas , Animais , Camundongos , Apoptose , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/metabolismo , Inflamação/metabolismo , Monoaminoxidase/metabolismo , Monoaminoxidase/farmacologia , Receptor 5-HT2A de Serotonina/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...